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Two different types of particle state models are discussed. In the first type, 
particles are considered to be dynamically bound systems of a small set of 
physical constituents. In the second type, particle states are constructed from 
tensor products of "symmetry constituents," i.e., states that are the basis elements 
of finite irreducible representations of an internal algebra. These states need not 
represent physical particles. We present three models of the first type. For the 
second type, we discuss in detail the main thrust of this paper, a new version of 
the quark-lepton model based on the algebra su(4)color • su(6)n .... . The quark 
color-triplet and a lepton color-singlet are united by a single irreducible 
representation of su(4)color. The su(6)navor algebra is an extension of the original 
su(3)~avor. All observed ground-state hadron multiplets are in full accord with 
the predictions of this model. The numbers of hadron ground states it predicts 
are 36 spin-0 mesons, 36 spin-I mesons, 70 spin-l/2 baryons, and 56 spin- 
3/2 baryons. 

1. I N T R O D U C T I O N  

In this paper we discuss two types of particle state models.  In the first 
type, all particles are considered to be dynamical ly  bound systems of a small  
set of  basic physical  constituents. In the second type, particle states are 
constructed from tensor products of basic spin eigenstates that belong to 
fundamental  irreducible representations (FIR) of an internal  algebra. The basic 
states need not  represent physical particles, and may be best characterized as 

"symmetry  consti tuents." 

The two types of models can lead to the same set of  states, as illustrated 
in the simple case of the H atom. The observed so(4) symmetry of the levels 

of the H atom lead to four "H-quarks" as the elements of the 4-dimensional  
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FIR of the so(4) algebra. Indeed all states of the H atom can be constructed 
from the tensor product of these four "H-quarks." There is no potential in 
this model, and the states are obtained as normal modes of the H-atom 
Hamiltonian. On the other hand, we have the dynamical picture of the H 
atom consisting of proton and electron bound by electromagnetic interactions. 
Similar dynamical symmetry algebras, like o(5), u(6) . . . . .  have been used 
in nuclear and atomic physics without assuming that their FIRs are real 
physical constituents. 

Although the two types of models can lead to the same set of states of 
a compound system (CS), the calculations involved are very different. In 
the first type one must specify the interactions of the physical constituents 
employing a formalism such as a gauge field theory. For strong interactions, 
and for a system of more than two constituents, this is usually a very difficult 
problem. Even for two interacting constituents the relativistic formulation 
is difficult. 

In the second type, the basic approach is that of assuming a dynamical 
algebra that determines the ground states of the CS, the towers of excited 
states based upon them, and the transition operators between the different 
states. The symmetry constituents of the CS are the basis elements of irreduc- 
ible representations (IR) of the dynamical algebra that are spin eigenstates, 
but have no other physical attributes, such as mass, position, momentum, or 
magnetic moment. 

What is observed are the physical properties of the CS, and not those 
of the assumed constituents; and these properties can be completely described 
by the quantum numbers (QN) of the whole system. This is also in accord with 
Heisenberg's original approach to quantum mechanics, and his philosophical 
views in his last years for replacing the description of microscopic systems 
in terms of physical constituents by a global approach. 

The attempt to understand the strange hadrons in the 1960s led to the 
su(3)f model (Gell-Mann and Ne'eman, 1964), where f stands for "flavor." 
This model explained well the strange hadron multiplets and some of their 
properties. The extension of this model in the 1970s to su(4)f (Georgi and 
Glashow, 1974) received confirmation from the discovery of the t~-boson, 
and the later discoveries of the charmed mesons. 

Originally, the quark states were regarded simply as elements of the 3- 
dimensional FIR of su(3)f. But with the success of the quark model in 
explaining many of the hadron properties and interactions, quarks were gradu- 
ally assumed to be real spin-l/2 fermions. In order to satisfy the Pauli 
exclusion principle in states such as A- = ddd, quarks were further assumed 
to come in three different "colors." 

In the meantime, the electroweak gauge field theory (Glashow, 1961; 
Weinberg, 1967; Salam, 1968) was developed, which established a linkage 
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between the d and u quarks and the leptons e- and ])e. It was already known 
that the leptons included ~-  and v~. With the later discovery of the leptons 
"r- and v~, and the evidence for hadrons containing charmed quarks c and 
bottom quarks b, the idea arose of three generations (families) of leptons 
and quarks, 

(e-, re; d, u), (Ix-, vr s, c), ('r-, v~; b, t) (1.1) 

The evidence that there are no more than three generations is obtained from 
the measurement of the Z ~ width, and in particular from the portion due to 
v~ pairs. At present, no algebra has been proposed that yields a generation 
QN, and that limits the number of generations to three. 

It will be seen in Section 5 that although it is fruitful to classify the six 
leptons into three generations, that is not the case for the six quarks. In fact, 
the assignment of quarks to three generation-doublets leads to multiplets that 
do not correspond to the observed hadron multiplets [see (5.3)], and all the 
benefits of the original su(3)f, which led to the idea of quarks in the first 
place, would be lost. There is no doubt that at the very least, su(3)f brings 
a definite correct order to low-lying hadrons. All these benefits are retained 
by assuming that the quarks belong to a FIR of su(6)f which includes su(3)f 
and is a natural extension of it. This is precisely what is done in the/q-model 
of Section 5. 

The success of the electroweak gauge field theory led to the development 
of quantum chromodynamics (QCD), also as a gauge field theory of strong 
interactions, in which color plays the same role as charge in quantum electro- 
dynamics (QED). 

In QCD one starts with massless "current" quarks that acquire mass via 
the Higgs mechanism. Since the estimated masses of the current quarks (e.g., 
8 MeV for u and 16 MeV for d) are much smaller than the hadron masses, 
a hadron is expected to contain an infinite "sea" of q~ pairs. The relationship 
between "current" quarks and the massive "constituent" quarks of the quark 
model that give the hadrons their QNs and properties is not clear. In particular, 
the hypothesis that a constituent quark is a "dressed" current quark is beset 
with difficulties (Keaton, 1994; Fritzsch, 1993). Moreover, there are many 
problems in understanding the hadron properties in terms of QCD dynamics 
(Raczka, 1993). There are no rules in QCD for how to make hadrons from 
quarks, and it is left up to the dynamics to determine what approximate 
symmetries should result. In the absence of a solution of the dynamical 
equations of QCD, it is desirable to formulate a model that does not depend 
upon quark dynamics, by considering the quark states to be elements of the 
FIR of an internal algebra. 

We discuss three different versions of the model of the first type, based 
on three different sets of basic physical constituents: (1) The stable particles 
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model in Section 2, (2) the/N-model in Section 3, and (3) the IA'-model in 
Section 4. Each succeeding version provides a more elaborate algebraic 
framework than the preceding ones, but they all predict a priori too many 
baryon states. It is possible that the dynamics of the physical constituents 
can lead to further restrictions on the number of compound baryon states. 
These models provide a simple intuitive meaning of the internal QNs and 
classify different types of "molecules" that one can build from the same 
constituents. 

The only model of the second type that we discuss is the/q-model of 
Section 5, which is the main thrust of this paper. It is based on the internal 
algebra su(4)c • su(6)f, where the subscript c stands for "color." The quark 
color-triplet is combined with a lepton color-singlet to form one FIR of su(4)c. 
The su(6)f algebra is an extension of su(3)f, and includes su(4)y and su(5)f 
quarks. To our knowledge, the analysis of the hadron multiplets of su(5)f and 
su(6)f is new. The su(6)y algebra should not be confused with the old su(6) 
that contained su(3)f and su(2)spi n . 

In this paper we concentrate on specifying all the ground-state hadron 
multiplets, with some discussion of the excited states. A full description of 
the excited states requires an extension of the internal dynamical algebra, 
perhaps to include so(4, 2). It is then possible to calculate form factors (Barut, 
1972, 1980a) and to explain the parton structure functions of hadrons without 
having to assume the physical reality of quarks. 

2. THE STABLE PARTICLES M O D E L  

The basic idea of this model (Barut, 1980b) is that only the absolutely 
stable particles and their antiparticles can be considered as true building 
blocks of all other particles. In the first version of this model p, e- ,  and l) e 
and their antiparticles were taken to be the basic building blocks. One con- 
structs from these first the states 

n = pe-ve,  v~ = v e ( v ~ )  

which are the two next most stable particles, and since they are sufficiently 
long-lived, they can form the next level of rather stable states 

and the next level 

~ -  = v~(e-~e), vT = V~(VeVe) 

"r- = vT(e-Ve), xr- = i x - ~  

and so on, with increasing complexity, higher mass, and hence decreasing 
stability. All mesons, baryons, and heavy leptons (even vector bosons) can 
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be so constructed. The amount of flavors like strangeness, charm, etc., turns 
out to be naturally related to the number of semistable constituents t-~-, v~, 
etc. They are conserved in the production, but due to their instability, they 
are not conserved when they decay, typically by a change of  AS = 1, which 
is the decay of the hadrons themselves. 

One immediately asks whether light leptons can form very massive new 
states at all. This possibility has not been considered in the usual models, 
because one thinks a bound state should have a lower mass than the sum of  
the masses of the constituents. The clue is that all the states so formed are 
unstable resonances, and a deep potential well barrier with a high positive 
energy peak at very short distances is sufficient to produce very massive and 
sufficiently long-lived new resonance states. It has been shown in many 
models that magnetic and anomalous magnetic moment interactions of even 
relativistic Dirac particles can indeed produce such deep potential wells at 
short distances. At any rate, all we need is a structure in the short-distance 
interactions of leptons, without changing anything about their interactions at 
atomic distances, which magnetic interactions precisely seem to do. 

Since the proton seems to be a composite object with an extended form 
factor, the model was further simplified to a truly leptonic model assuming 
only two absolutely stable constituents e -  and Ve and their antiparticles (Barut, 
1983). The quantum numbers of the proton are assumed to be the same as 
those of the (e+e-e +) system. The stability, the mass, and the magnetic moment 
of the proton must be understood dynamically. 

In the stable particles model the exact calculation of the masses for two 
or more relativistic particles with magnetic interactions is a difficult problem, 
solved only in special cases or approximately. This is also the case in quark 
models. But then we have a clear intuitive picture for phenomena like CP 
violation, large-spin asymmetries, etc. 

3. T H E / N - M O D E L  

We call flavor the QN that distinguishes between each of the leptons 
I = e , Ix , x and its neutrino vt on the one hand, and between the nucleons 
n and p on the other hand; and generation the QN that distinguishes between 
the three different l's or v~'s. The simplest algebraic model of the first type 
whose physical constituents carry the flavor and generation QNs, as well as 
the QN that distinguishes between leptons and baryons, is the /N-model, 
whose basic constituents are those of Fig. 1 and their antiparticles. 

It is instructive to explore this model to find out what hadron states it 
predicts and the problems it encounters. Moreover, according to the current 
ideas, the three lepton generations of flavor doublets 

(e-, re), (~-, V~), ('r-, v0 (3.1) 
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I3=-1/2 13= +1/2 
Fig. 1. lN fundamental multiplets. 

are related to the three quark generations of flavor doublets 

(d, u), (S, c), (b, t) (3.2) 

Thus many of the predictions of the /N-model can be applied to a quark 
model having the analogous structure. 

A. The Model Algebra. According to the above discussion, the algebra 
whose FIR has the structure of Fig. 1 is 

NtN = U(1)tU • SU(2)f • SU(3)g (3.3) 

wheref stands for "flavor" and g for "generation." The u(1)tu QN distinguishes 
between the leptons su(3)g triplet and the nucleons su(3)g singlet. The su(2)f 
algebra provides the flavor-isospin QNs that distinguish I from vt and n from 
p; and the su(3)~ algebra the QNs that distinguish between the elements of 
the lepton triplets. 

The basic physical constituents of the/N-model are the spin-1/2 fermions 
of Fig. 1 and their antiparticles, i.e., 

(e ,Ix , r  ;n), (ve, vr (3.4a) 

(e +, tx +, "r+; n), (re, v~, v~; ~) (3.4b) 

Their states are described by the tensor product of Dirac 4-component spinors 
with the eigenstates of the FIR of s~m. 

B. Meson Ground States. The meson ground states are obtained from 
the tensor product of the states of leptons and antileptons. With respect to 
su(2)f, this gives 
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2 |  3 0  1 (3.5) 

and with respect to su(3)g, this gives 

3 | 3 = 8 �9 1 (3.6) 

Thus we have altogether (3 + 1) X (8 + 1) = 36 meson ground states. 
Since the leptons and antileptons are distinguishable from each other, 

the Pauli principle does not apply to their tensor products. Thus, both spins 
0 and 1, resulting from the product of two spin-l/2 states, are allowed a 
priori.  Consequently, we have 36 meson states with spin 0, and 36 with spin 1. 

The flavor-isospin QNs of the multiplets on the RHS of (3.5) are given 
in Table I, where I ~  is also equal to the electric charge. 

Each of these four flavor multiplets consists, according to (3.6), of a 
generation-octet plus a generation-singlet. For instance, the ground states of 
the negatively charged mesons consist of the octet 

e - v ~ ,  2-l/2(e-Ve -- tZ-~),  tX-~; 2-1 /Z(e -~  + ~ - ~ )  (3.7a) 

" r -~ ,  "r-re; e - ~ ,  ~-vT (3.7b) 

and the singlet 

3-VZ(e-~ + i x - ~  + a'-F,) (3.7c) 

Similarly, we have a positively charged 8 E3 1, which gives the antimesons 
of (3.7), and two neutral 8 �9 1 meson multiplets, as indicated in Table I. 

To identify the states II with the observed mesons, we make the following 
associations between the leptons and flavor QNs: 

e -  "~, d, Ve O U, ix- ~" s, 

Accordingly, we have, for example, 

"IT- = e - r e ,  "IT + = Ve e+, 

K -  = ix - -~e ,  K+ = v, ix +, 

v~ '~c ,  " r - o b ,  v , ~ , t  (3.8) 

7 ~ = 2 - 1 / 2 ( e - e  + + VeVe) 

K 0 = e-ix +, K 0 = ix-e + 

(3.9a) 

(3.9b) 

From (3.9) and (3.7) we see that the w meson triplet is scattered among three 

Table I. Meson Flavor-Isospin Multiplets 

I o~ 1 1 1 0 
I N - 1  0 + l  0 
Mesons Iv 2-1/2(/1 + vv)  v-l 2-J/2(I-I -- vv) 
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different octets, labeled by I w = + 1 and 13~ = - 1 ,  0 + 1. This feature is 
the same for the three-generations quark model. 

C. Baryon Ground States. The baryon ground states are obtained from 
the formula 

baryon(B) = nucleon(N) | [meson(M)] n (3.10) 

where n = 0, 1, 2, 3 . . . .  As examples of n = 1, 2, and 3, we have 

~ -  = nK- ,  ~ -  = (nK ~ + p K - ) K -  (3.11a) 

and 

l-l- = (nK ~ + p K - ) K ~  *- (3.11b) 

where K*- has spin 1. This is essentially the old model of a baryon consisting 
of a nucleon with a meson cloud. 

Again, since all particles in the tensor product (3.10) are distinguishable, 
all spins resulting from 

2 @ ( 2 @ 2 )  = 2 @ ( 1 0 3 ) = 2 0 ( 2 0 4 )  for n =  1 (3.12) 

are a priori allowed, i.e., each baryon state, for n = 1, occurs twice with 
spin 1/2 and once with spin 3/2. 

The three main undesirable features of this model are: (1) In addition 
to the strange baryons (e.g., Np~-e +) there are also unobservable antistrange 
baryon states (e.g., Ne-lx+). (2) Since there is no limit on the exponent n in 
(3.10), there is an indefinite number of baryon ground states, each with too 
many spin possibilities. (3) The hadron multiplets do not correspond with 
the observed multiplets. 

4. T H E / A ' - M O D E L  

This model is an extension of a model previously proposed by the 
authors (Basri and Barut, 1983) to include the ('r-, v+) leptons and the (bottom, 
top) flavors. Its main motivation is to obtain the observed hadron multiplets 
by using the three sextets, shown in Fig. 2, of leptons (t), antileptons (l'), 

e -  

-su(s) 
.~(6) 

_re ~ e + ~a ~ / \ /  \ 
r 

Fig. 2. IA' fundamental multiplets. 

/ 
V 

4' 
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andbaryons (A') as the building blocks, instead of quarks (q). The prime 
on l' indicates that the antileptons (l) are reordered to represent the FIR 6 
of su(6)f -~ SU(6)flavor instead of 6; and the prime over A indicates that A' is 

a set of constituent (bare) baryons, and not the observed baryons. Each of 
these three sextets is a physical realization of the 6 FIR of su(6)f. 

The correspondence between these physical constituents and quarks is 
given in Table II. This correspondence is for the purpose of obtaining the 
correct QNs of the hadron states, and is not intended to be one-to-one between 
the basic fermions and quarks. 

We assume that the hadron states are given by 

mesons = ll' (4.1) 

baryons = (/l')A' (4.2) 

For example, ar-(dK) = e-~e, and the proton p(du u) could be e-e+p ', VeVeP', 
or vee+n ', depending on the dynamics. 

One may ask why the mesons and baryons so formed have strong 
interactions. The strong interactions are short-ranged. When mesons or nucle- 
ons approach each other the constituent leptons will be subject to the short- 
distance magnetic interactions and, perhaps more importantly, the leptons 
will be exchanged. At large distances we have just the Coulomb forces and 
the tail of the magnetic interaction. We also remark that weak decays, which 
are also short-ranged, are due to the barrier penetration at short distances. 
For further discussion we refer to Barut (1980b). 

Since all the fermions on the RHS of (4.1) and (4.2) are distinguishable, 
the Pauli principle does not apply to them, and thus all possible spins are 
allowed. Since l, l', A' all have spin 1/2, the number of hadron states in the 
lA'-model are 

62 = 36 meson states with spins 0 and 1 (4.3) 

6 3 = 216 baryon states with spins 1/2, 1/2, and 3/2 (4.4) 

Table  I I .  Correspondence Between l, l ' ,  A '  and Quarks  

l l '  A '  Average charge 

Flavor 

d e -  ve A~ ~  - 1 / 3  
u 1/e e + A "§ -~ p '  2/3 
s lay ~ A '~  ------ k '  - 1 / 3  
c v~ Iz + A "§ 2/3 
b "r - ~ A/, ~ - 1/3 
t u~ "r + A~ + 2/3 

Color  Green (G) Red (R) Blue (B) 
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i.e., a total of 2 X 36 = 72 meson states, and 3 x 216 = 648 baryon states. 
In order to be able to compare the lA'- and/q-models and get better 

insight into both, we present below all the su(3) baryon multiplets that are 
obtained in the lA'-model. 

Each of the three sextets in Fig. 2 consists of one su(3) triplet 3 and 
three su(3) singlets 1. Since (Halzen and Martin, 1984) 

3 ~ 3  : 6 ~ ) ~ ,  6 @ 3  = 10.. S ~) 8_S', ~ ~ 3 = 8..A, ~) T_a , (4.5) 

where the subscript S means completely symmetric, A completely antisym- 
metric (a.s.), S' symmetric in the first two fermions, and A' a.s. in the first 
two fermions, then 

(3 | 3) | 3 = (lO__s �9 _8s') �9 (8_a' �9 !a, ) (4.6) 

( 3 | 1 7 4 1 7 4  3 x 3  = 9 t i m e s  (4.7) 

since there are three different 3 Q 3's, and three different l's; 

3 | 1 7 4  = 3 |  3 X 3 2 = 2 7 t i m e s  (4.8) 

since there are three 3's, and 32 = 9 (1 | 1)'s; 

1 | 1 | 1 = 1, 33 = 27 times (4.9) 

This gives a total number of states equal to 

( 1 0 +  8 + 8 + 1) + ( 6 +  3) X 9 +  (3 X 27) + 2 7  = 2 1 6  (4.10) 

as expected. The su(3) multiplets content is 

10, 2 X 8 ,  la, 9 X 6 ,  9 X 3 ,  2 7 X 3 ,  27X 1 (4.11) 

This contains, for example, a spin-3/2 octet and a spin-l/2 decouplet which 
are not observed. 

In the/q-model the meson states are given by (5.8) and the baryon states 
by (5.9). Since q and ~ are distinguishable, the Pauli principle does not apply 
to the meson states q~, but it does apply to the baryon states qqq. Thus the 
meson states are the same in both the lA'- and/q-models. However, the baryon 
ground states are required in the/q-model to be completely antisymmetric with 
respect to the exchange of color, flavor, and spin of any two quarks. This 
severely limits the number of allowed baryon states to only 126, as shown 
in Table V, instead of the 648 predicted by the lA'-model. 

If the underlying interactions at short distances have the proper symmet- 
ries, then perhaps one could understand the reduction of the number of 
possible baryon states from 648. For example, it is clear that the magnetic 
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moment interactions are dependent on the spin orientation of the constituents, 
so that attractive forces can only occur for some spin orientations and not 
for others. 

The internal algebra that gives the QNs specifying the multiplets of 
Fig. 2 is 

~/tA' = U(1)IA, • SU(6)f (4.12) 

The U(1)tA, QN distinguishes between l or l' and A' sextets, and the su(6)f 
QNs distinguish between the elements of each sextet. 

The commuting elements of su(6)f, whose eigenvalues provide the QNs 
specifying the individual states, are taken to be those of su(6)fand its subalge- 
bras su(N)ffor N = 5, 4, 3, 2, as shown in Fig. 2. This gives hadron multiplets 
that correspond to observed multiplets, but does not give the three generations 
of lepton flavor doublets (3.1). 

The advantages of the/A'-model over the preceding ones in Sections 
2 and 3 is that the total number of baryon ground states is finite, and there 
are no antistrange baryons, since there are no antiflavors in (4.2). 

5. T H E / q - M O D E L  

In the last three sections we discussed models of the first type. We now 
discuss a model of the second type, i.e., a model in which particle states are 
constructed from tensor products of spin eigenstates that belong to finite IRs 
of an internal algebra ~ .  These basic states, which can be characterized as 
"symmetry constituents," need not represent physical particles. 

In the quark model, the masses of the current or constituent quarks that 
are assigned vary considerably from MeV to hundreds of GeV. It is difficult 
under these conditions to consider quarks to be identical fermions in order 
to apply the Pauli principle to them in the baryon states qqq. This problem 
does not arise if the quarks are considered to be symmetry constituents. They 
are then completely specified by the QNs of ~ and by spin, and are not 
assigned other properties such as mass and magnetic moment. These proper- 
ties are observable only for the compound system, and not for its constituents. 

A mass formula such as that of Gell-Mann and Okubo can be expressed 
purely in terms of the QNs describing the compound system, and the same 
is true for other physical properties. Even the parton structure of hadrons 
can be described by form factors that are function of the QNs of the compound 
system and its excited states (Barut, 1972, 1980a). 

We regard experimental facts, about the ss, cc, b-b, and tt systems or 
any favored hadrons as support for the internal algebra that yields the flavor 
QNs, rather than for the physical existence of a quark of particular flavor. 
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5.1 .  B a s i c  A s s u m p t i o n s  

(i) The leptons (1), quarks (q), and their antiparticles 7 and ~ are assumed 
to be spin-l/2 fermions whose states are described by Dirac 4-component 
spinors. Moreover, their states are also elements of the lowest-dimensional 
FIR of an internal algebra ,~. 

(ii) A tensor product of IRs of ~ must decompose into a direct sum of 
IRs of ~ .  This assumption excludes the inclusion of a Clifford algebra Cln 
in ,~ since CIn has only one IR, and a tensor product of IRs of Cln would 
not lead to a direct sum of IRs of Cl,. 

(iii) We have 

= su(4)c X su(6)s (5.1) 

where the subscript c stands for "color" and f for "flavor." 
The algebra ~ is not a symmetry algebra of the Hamiltonian, and 

thus masses of hadrons belonging to a multiplet can be very different from 
each other. 

The su(6) algebra has five FIRs described by the Young tableux designa- 
tions 

6 = n = ( 1 0 0 0 0 ) ,  15 = B = (01000), 20 = ~ = ( 0 0 1 0 0 )  

n 
]5  = B = (00010), 6 = ~ = (00001) (5.2) - -  u [] 

These IRs are fundamental in the sense that any IR of su(6), (h~,)~z �9 �9 �9 ks), 
can be expressed as a linear combination of the five FIRs of (5.2). 

However, all IRs of su(6) can also be obtained from tensor products of 
6 alone. For example, we have 

o|217 ~ |  3, etc. 

This is the reason why we represent the basic fermions by elements of 6 and 
not the other FIRs. The basic antifermions are represented by elements of 

If instead of su(6) s in (5.1), we were to use the algebra 

S U ( 2 ) f l  . . . .  X S U ( 3 ) g  . . . . .  tions 

as in (3.3), to reflect the current ideas about three quark generations of flavor- 
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doublets, then we would obtain hadron multiplets, as illustrated in (5.3), that 
have no correspondence to observed multiplets; and in particular, we would 
lose the meson octet and baryon octet and decouplet of the original su(3) 
model that have had strong experimental support, and that were instrumental 
in the development of quark theory. For example if we rewrite (3.7a), (3.7b) 
with the help of the correspondences (3.8), we obtain the octet 

D-  = d T ,  ~ -  - D.~- = d~ - sT, (5.3a) 
K-  = sT, ~r- + D~- = d~ + sT 

B2 = bT, B- = b~, T- = d~, ~ = s~ (5.3b) 

(iv) We have 

su(4)~su(3)c (5.4) 

instead of su(4)c ~ su(2) x su(2). Thus the FIR of su(4)c, ~ ,  consists of an 
�9 su(3)c triplet 3~, which is associated with quarks, and an su(3)c singlet 1~, 
which is associated with leptons, as shown in Fig. 3. In this way, quarks and 
leptons are linked together as elements of a single multiplet, which is not 
the case in the standard su(2) X u(1) model (Glashow, 1961; Weinberg, 1967; 
Salam, 1968). 

If u(1)lq x su(3)c were chosen instead of su(4)~, then the leptons 1~ 
would not be a FIR of su(3)~, which violates assumption (ii). 

(v) According to (5.1) and (iv), we have a lepton-su(6)f associated with 
L ,  which we denote by su(6)t, and three quark-su(6)f's associated with ~ ,  
which we denote collectively by su(6)q. Since leptons do not interact strongly, 
whereas quarks do, the complete set of commuting operators of su(6)f, whose 
QNs describe the l and q states, are different. This difference is expressed 
by the assumption 

su(6)l ~ su(2)e X su(2)~ X su(2)r (5.5a) 

qf_ 

qn 

l 

Fig. 3. The FIRs of su(4)~. 
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and 

su(6)q ~ SU(5)q ~ SU(4)q ~ SU(3)q ~ SU(2)q (5.5b) 

In accordance with this, the lepton states are described by the Casimir opera- 
tors of su(6)t, su(2)e, su(2)~, and su(2)~, as well as 1 (1) and I~31) (l = e, Ix, ~:). 
The quark states, on the other hand, are described by the Casimir operators 
of su(N), for N = 2 . . . . .  6, and all the other commuting operators of the 
different subalgebras, such as the hypercharge and isospin of su(3). 

A mass formula for the leptons or the hadrons formed from the quarks 
is a function of all these QNs. The same is true for all other hadron properties, 
such as magnetic moments, and no physical properties are assigned to quarks. 

The FIRs 61, 6t of su(6)l and 6q, ~ of SU(6)q are shown in Figs. 4 and 5. 

One can also decompose 6q into the two su(3) triplets 

(d ,u ;s ) ,  (b , t ; c )  

However, the resulting hadron multiplets would not correspond to the 
observed multiplets. 

(vi) Only color-singlets are observable. Thus leptons are observable, 
whereas quarks are not, since they belong to 3c. From the tensor products 

3 |  1 G 8  (5.6) 

3 |  = 3 0 6  (5.7a) 

(3_ | 3_) | 3_ = (~_ �9 6) | 3_ = (!  | 8) �9 (8' | 10) (5.7b) 

we see that q~ and qqq are observable, since they have a singlet term in 
(5.6) and (5.7), but qq is not observable. 

(vii) In accordance with (5.6) and (5.7), we assume that the hadron 
states are given by the color singlets 

meson(qa~b) = 3-1/2 ~ q(ag)~) (5.8) 
k 

baryon( qaqbqc) = 6 -1/z ~juqOa) q~k) q~ 0 (5.9) 

where a, b, c = 1 . . . . .  6 range over the six flavors of 6q, and j,  k, l range 
over the three colors G, R, B of 3~; ~ju is the Levi-Civita symbol. 

e-~ ; re  % ;  6 e  + 

Fig. 4. The FIRs of su(6)v 
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-su(3) 

-s.(4) 

-su(5) 

su(6) 

d k 

\ 
k u 

/ 
/ 

a k 

7~ 

..6~: 

ck 

b k g, 

tk ~r 

k = G,R ,B  k = G,R,B 
Fig. 5, The FIRs of su(6)q. 

These formulas do not necessarily imply that hadrons are compound 
systems consisting of real constituent quarks. They are useful in predicting 
hadron state multiplets; and it is not understood why they work as well as 
they do. 

If quarks were assumed to be real, then it should be noted that the 
"constituent" quarks q~k) involved in (5.8) and (5.9) are not the "current" 
quarks of QCD. 

If (5.6) is applied to quarks, then the color-singlet ~ of (5.8) is identified 
with mesons, and the color-octet 8c with the eight gluons 

GR, GB, RG, RB, BG, BR, GG - RR, GG + RR - 2B-B (5.10) 

Since a gluon does not belong to 1c, it is not observable. But two gluons 
could form a color-singlet (glueball), which could be observable. 

(viii) The baryon ground states qqq are totally a.s. with respect to the 
interchange of the color, flavor, and spin of any two quarks. Note that the 
spin comes from the Dirac algebra. 

Since, according to (5.9), the baryon states are color-a.s., this implies 
that the baryon ground states must be totally flavor-spin symmetric. This 
conclusion plays a crucial role in the construction of the baryon ground states 
in Section 5.4. 

If quarks were real, then all orbital angular momenta of qqq would be 
zero in the ground state, and a baryon ground state would be totally space 
symmetric. When (viii) is combined with this, it would be equivalent to the 
Pauli principle applied to the spin-1/2 identical fermions q. In baryon excited 
states the orbital angular momenta are not zero, and the space symmetry 
changes together with the symmetry of the rest of the state. 

If quarks were not real, then it is not meaningful to assign them space 
coordinates. However, it is still possible to assign an intrinsic parity "q to the 
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whole baryon rest state. The sign of "q for any baryon state is arbitrary, since 
baryons are fermions, but it should be possible to fix the sign of "q/'q0, where 
"q0 refers to the ground state, by the dynamical algebra describing the baryon 
excited states (Barut, 1972, 1980a). We can then make the following assump- 
tion regarding the symmetry of the baryon excited states: 

(ix) A baryon excited state (qqq)' is totally a.s. with respect to the 
interchange of color, flavor, and spin coordinates of any two quarks if ~hq0 
= + 1, and totally symmetric if "q/'q0 = - 1. 

This, in effect, restates the Pauli principle by replacing symmetry with 
respect to exchange of space coordinates by "q/'q0. For real quarks, these two 
quantities are related by "q/'qo = ( -1 )  L- Assumption (ix) allows us to apply 
the Pauli principle without committing ourselves to the reality of quarks, and 
simply treating quark states as eigenstates of an internal algebra, in which 
case the total orbital angular momentum L has no meaning. 

It follows from (ix) that there are two sets of baryon multiplets, one 
with "q/'q0 = + 1, and the other with "q/'q0 = -1 .  Each set is the base of a 
tower of excited baryon states with successive states differing from each 
other by one unit of total angular momentum. This is a definite prediction 
that can be tested experimentally. 

Since q and ~ are distinguishable by the class (Gourdin, 1967) (see 
Section 5.2) of the IR to which they belong, the Pauli principle, or (ix), does 
not apply to the meson q~ states. Thus meson excited states form one tower 
over the ground states with successive states separated by one unit of angular 
momentum, and alternating in the sign of "q (Barut, 1972, 1980a). 

(x) The lowest-dimensional inequivalent FIRs of su(4)c are 4c and ~c, 

and of su(6)f are 6fand ~f. We assume that the only FIRs of ~ that are of 

physical significance are 

4c | 61 and _4~ | ___I (5.11) 

i.e., we exclude the possibilities 4~ @ ~f and 4_- c @ 6 f. 

We identify 4c @ 6 f  with the basic ferrnions (l, q), and _4c @ 6y with 

the basic antifermions (1, ~). Thus the antifermions have both antiflavor and 
anticolor. The eight sextets of (5.11) are shown in Figs. 4 and 5. 

There is one more assumption concerning vector bosons, which will be 
stated at the end of Section 5.2. 

5.2. Quantum Numbers of Leptons and Quarks 

According to (5.5a), we decompose su(6)l into three disjoint isospin 
su(2) subalgebras, which we denote by 

SU(2)e, SU(2)~, SU(2)~ (5.12) 
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T a b l e  III.  Leptons Quantum Numbers 

e - ,  V e [,L-,  -Vg~ ~'i-, V r 

L~ 1, 1 0, 0 0, 0 
L~ 0 ,0  1, 1 0 ,0  
le 3 - - !  • O, 0 0, 0 2' 2 
1~3 0, 0 --• • 0, 0 
l,s O, 0 O, 0 - •  • 2 ~ 2 

where the subscripts e, ~, "r refer to the electron, muon, and taon, respectively. 
Each subalgebra contains an isospin component i3, whose eigenvalues are 
shown in Table III. 

The algebra su(6) has altogether five mutually commuting operators. 
For su(6)t, we choose these to be 

Le, (5.13) 

The eigenvalues Le,  Lv~ of Le, L~, shown in Table III, serve to distinguish the 
three su(2) subalgebras (5.12) from each other. The QNs of the antileptons 

are opposite in sign to those of the leptons 1 in Table III. 
We define for su(6)l the lepton-isospin component 

I~ ------- I~ + I~ + I~ (5.14) 

Similarly, su(6)q has five mutually commuting elements/~/a (a = 1 . . . .  
5), whose eigenvalues are given in Table IV. The eigenvalue Hi distinguishes 
between the element of su(2)g, H2 between the _2 and _1 su(2)q IRs of su(3)q, 
H3 between the _3 and 1 su(3)g IRs of su(4)q, H4 between the _4 and 1 su(4)q 
IRs of su(5)g, and H6 between the 5_ and 1 su(5)g IRs of su(6)g. The antiquarks 

have QNs that are opposite in sign to those in Table IV. 
For su(6)q we define a quark-isospin component by 

I~ = Hi + (�89 -~H3) + (1H 4 -3/-/5) (5.15) 

T a b l e  IV. Quarks Quantum Numbers 

d u s c b t 

H~ - •  • 0 0 0 0 2 2 
l i _ 2  0 0 0 

~ i _ 3  0 0 H 3 ~- ~- ~- u 

I 1 1 I _ 4  0 
H 4 .g- ~- ~ ~ ~ 

I 1 1 I 1 __5 
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The FIRs 6 f  and _6y of su(6)f are distinguished from each other by a 

class QN (Gourdin, 1967), which is a function of the Casimir operators of 
su(6)r, and is a linear function of the numbers specifying the Young tableau 
of the FIRs. For su(6)t, this QN is identified with 

lepton number (L) = { + I  _ 

and for su(6)q with 

and 

for leptons 
for antileptons (5.16) 

~+1/3 for quarks (5.17) 
baryon number (B) = [ _  1/3 for antiquarks 

The class QN for the FIRs (5.2) has the respective values 

L = 1, 2, 3, - 2 ,  - 1 for su(6)l 

B = 1/3, 2/3, 1, -2 /3 ,  -1 /3  for su(6)q 

If we assume that only hadron states with integer values of B are observable, 
then only the 20 FIR is observable. This is indeed one of the IRs resulting 
from the tensor product qqq = 6 | 6 | 6, as shown in (5.45). Since 

B(q~) = O, B(qqq) = + 1, B(~ ~ -~) = - 1 

then q-~, qqq and their antiparticles are all observable. 
Although the QNs L and B do distinguish between the basic fermions 

and antifermions, they cannot replace the particle-antiparticle QN, A. For 
example, 7r- and 7r + both have B = 0, yet they are different and form a 
particle-antiparticle pair. 

The QN A is equal to the combined operation CPT, where C is charge 
conjugation, P is the parity, and T is the time reversal. The operations P and 
T refer to Poincar6 states in general, and thus to both bosons and fermions, 
and not just to Dirac fermion states. Since C, P, and T are all multiplicative, 
so is A = CPT. Thus A is conserved multiplicatively, whereas L and B are 
conserved additively. 

With the help of (5.16) we can define 

tauon number (LO =- L - L e - L~ (5.18) 

which has the values + i for "r-, v~ and - 1  for "r +, ~ .  
It was stated below (5.4) that the FIR 4_c of su(4)c consists of the IRs 

3c and lc  of su(3)c. These IRs are distinguished from each other by the QN 
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f - 1 for leptons 
color hypercharge (Yr = + 1/3 for quarks (5.19) 

with opposite signs for the antifermions. Note that Yc is one of the three QNs 
that specify the elements of an IR of su(4)c. The other two QNs specify the 
elements of an IR of su(3)c C su(4)c. 

The electric charges of leptons and quarks are given by 

1 1 
at  = ~ Y~ + 11, aq = ~ Yc + Iq (5.20) 

and have the values 

Q(e , Ix , "r-) = - 1 ,  Q(ve, v~, vr) = 0 (5.21a) 

Q(d, s, t) = -1 /3 ,  Q(u, c, t) = +2/3 (5.21b) 

as can be verified from (5.19), (5.15), (5.14), and Tables III and IV. The 
charges (5.20) are related to each other by 

2 
Qq = Qt + ~ (5.22) 

We are now in a position to state the final assumption of the/q-model.  
(xi) The vector boson states are given by the expressions 

photon ('y) = 2 -1/2 ~] (1-I + - v~t) (5.23a) 
l 

W- = ~] l-Vt, Z ~ = 2 -1/2 ~] (1-1 + + vtvl), W + = ~ vtl+ 
l l l 

(5.23b) 

where the sums are over l = e, Ix, "r. Note that in (5.23) 

Le = 0, L~ = 0, L~ = 0 (5.24) 

and thus there is no mixing between the elements of the three su(2) subalgebras 
(5.12). In effect, this assumes the conservation of L e, L~, and L~. If neutrino 
oscillations (v~ ~ v~ ~ re) is established experimentally, then terms of the 
form e - ~ ,  etc., would need to be added to (5.23). 

An su(2) algebra has one FIR, which is 2, and 

2 |  = 1 0 3  (5.25) 

The photon state (5.23a) is an element of 1, and the vector boson triplet 
(5.23b) constitutes 3. 
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Since 1 and I are distinguishable, ll can occur with spin 1 or 0. All the 
states (5.23) occur only with spin 1. This may have something to do with 
the nature of electroweak interactions, and is a fact that needs explanation. 

5.3. Meson Ground States 

The meson ground states are constructed from the color-singlet (5.8). 
In accordance with the q-sextet of Fig. 5 and the decomposition (5.5b), we 
give below the membership of every meson multiplet to the IR of su(6)q and 
all its subalgebras, su(5)q, su(4)q, su(3)q, and su(2)q. For this purpose we 
introduce the following definitions: 

(P)N denotes the p-dimensional IR of su(N). 
(P)N = (q, r)N-i denotes the decomposition of (P)N into the q- and f- 

IRs of the subalgebra su(N - 1). 
(P | q)u denotes the tensor product of p- and q-dimensional IRs of su(N). 
Starting with su(6), the meson states are given by 

(6 | 6)6 = (1, 5)5 | (1, 5)5 = (1)6 �9 (35)6 (5.26a) 

(]')6 = (1 @ ]-)5, (35)6 = (1 @ 5)5 �9 (5 @ ]')5 ~) (5 @ 5)5 
(5.26b) 

(5 | 5)5 = (1, 4)4 | (1, 4)4 = (])5 �9 (24)5 (5.27a) 

(]-)5 = (1 | ])4, (24)5 = (1 | 4)4 �9 (4 | ])4 �9 (4 | 4)4 
(5.27b) 

(4 | 4)4 = (1, 3)3 | (1, 3)3 = (])4 �9 (15)4 (5.28a) 

(]-)4 : (1 | ]-)3, (15)4 = (1 | 5)3 �9 (3 | ]-)3 �9 (3 | 5)3 
(5.28b) 

(3 | 5)3 = (1, 2)2 | (1, 2)2 = (]-)3 �9 (8)3 (5.29a) 

(]-)3 = (1 | ]')2, (8)3 = (1 | 2)z G (2 | ]')2 �9 (2 | 2)2 
(5.29b) 

(2 | 2)2 = (]-)2 �9 (3)2 (5.30) 

For instance, (3)2 e (8)3 ~ (15)4 ~ (24)5 ~ (35)6. 
In this way, the membership of every isospin su(2) multiplet can be 

traced to its ancestor su(3), su(4), su(5), and su(6) multiplets. 
All the meson multiplets resulting from (5.26) to (5.30) are presented 

in Fig. 6. Since q and ~ are distinguishable, each of the 36 meson states 
occurs with both spin 0 (pseudoscalar) and spin 1 (vector). The meson symbols 
in Fig. 6 are those of the pseudoscalar mesons. 
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| 

rl~(tt-) 

0)6 = 0 x ~)~ 

| 

(T)~: 0 | 

| 

(04=0 | 3 

(r)C (l | 

7~ T (~) r'(d~)\ r/~ 

(l | 0 | 

B~ B+(uB) 

B'(b~) B~(b~) e~ I (c~) 

(l | ~)~ (4 | ~4 

z~+(c~) D'(dO b~ 

K~ ~+(,,~) 

~'( ~ ~+(u~) 
n (dd'§ u~ 

(S) 3 
Fig. 6. Pseudoscalar meson multiplets. 

5 .4 .  B a r y o n  G r o u n d  S t a t e s  

The baryon ground states are constructed from the color-singlet states 
(5.9). It was pointed out in Section 5.1 in the discussion of assumption (viii) 
that the flavor-spin factor of a baryon state must be completely symmetric. 
For this reason, instead of proceeding as in (5.26)-(5.30), we first examine 
the symmetry of  the spin states and then find the appropriate flavor states 
associated with them. This will entail combining several state representations 
of the same IR to obtain flavor states of the correct symmetry. 
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The spin states obtained from (3.12) are 

13/2)3a = (+ + +), 13/2)-3a = ( -  - _ 

] 312)1n = 

13/2)- 1/2 = 

112(S12))1n = 

112(&2))-1/2 = 

l 1 2 ( & 3 ) ) l a  = 

112(S13))-u2 = 

1/2($23))u2 = 

1/2($23)}- u2 = 

l / 2 ( A l z ) ) l n  = 

l12(A12)) -1a  = 

II2(A13))u2 = 

1/2(Al3))-1/2 = 

1/2(Ae3))u2 = 

1 /2(A23))_uz  = 

3 - 1 a [ ( +  + - )  + ( +  - 

3 - 1 / 2 [ ( _  _ + )  + ( -  + 

6 - 1 a [ ( +  _ + )  + ( -  + 

6 - 1 / 2 [ ( -  + - )  + ( +  - 

6 -1 '2 [ (+  + - )  + ( -  + 

6 - 1 / 2 [ ( _  _ + )  + ( +  - 

6 - 1 a [ ( +  + - )  + ( +  - 

6 - 1 a [ ( _  _ + )  + ( -  + 

2-1 /2 [ (+  _ + )  - ( -  + 

2-1/2[( - + - - )  -- ( +  -- 

2 - 1 / 2 [ ( +  + - - )  --  ( - -  + 

2-1 /2[ (_  -- + )  -- ( +  -- 

2 - 1 a [ ( +  + - - )  -- ( +  -- 

2 -1 /2 [ (_  -- + )  -- ( - -  + 

) (5.31 a) 

+) + ( -  + +)] (5.31b) 

- )  + (+ - -)1 (5.31c) 

+) - 2(+ + - ) ]  (5.32a) 

- )  - 2 ( -  - +)] (5.32b) 

+)  - 2(+ - +)] (5.32c) 

- ) - 2 ( -  + -)1 (5.32d) 

+) - 2 ( -  + +)] (5.32e) 

- )  - 2(+ - - ) ]  (5.32f) 

+)] (5.33a) 

- ) ]  (5.33b) 

+)] (5.33c) 

- ) ]  (5.33d) 

+)] (5.33e) 

-)1 (5.33f) 

The index S 0 (A0) means symmetric (antisymmetric) with respect to inter- 
change of the spins in the ith and j th  places. 

To construct the baryon multiplets, we proceed as in (4.6)-(4.11) with 
the c o n d i t i o n  that the flavor-spin states must be completely symmetric. For 
the multiplets (4.6) resulting from 3 | 3 | 3, the only possibilities are 
(Halzen and Martin, 1984) 

lO 13/2), ~ [8(S0) 11/2(S~) + 8(Aij)[ l/2(A0))] (5.34) 
i<) 

The totally a.s. IR 1 A does not contribute to the ground state because there 
is no spin state it can be combined with to form a totally symmetric flavor- 
spin state. But it could contribute to an excited state with an a.s. space 
wavefunction (Halzen and Martin, 1984). Thus we obtain only 10 + 8 = 
18 states from 3 | 3 | 3, compared to the 27 • 3 = 81 states given by (4.6). 
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For the tensor product of two 3's and one 1, we have the three possi- 
ble combinations 

(3 | 3) | 1 = 6(S12) �9 3_(A~2) (5.35a) 

(_3 | _1) | 3_ = 6_(S,3) ff~ 3_-(Al3), 1 | (_3 | 3_) = _6(Sz3) �9 3_-(A23) 

(5.35b) 
There are two different ways of obtaining completely symmetric flavor- 

spin states for 6, namely 

6(1/2) -- ~] 6(Sij)l 1/2(S0)) (5.36a) 
i<j 

6(3/2) = [6(S~2) + 6(S~3) + 6($23))]13/2) (5.36b) 

but only one way for 3, i.e., 

_3(1/2) = ~ 3_(Au) I 1/2(asi)) (5.37) 
i<j 

Thus 6 occurs with both spins 3/2 and 1/2, whereas 3 can only occur with 

spin 1/2. 
In the case 3 | 1 | 1, where 3 is the triplet (d, u; s) and 1 is c, b, or 

t, a completely symmetric flavor-spin state can be formed, once with spin 
3/2 and twice with spin 1/2. If p E 3 and x, y E 1, then we have 

3(pxy)3/2 ~ (pxy + 

3(pxy)l/2 ~ (pxy + 

+ (ypx 

3[pxy]l/2 --- (pxy - 

+ (ypx 

xyp + ypx + yxp + xpy + pyx)]3/2) (5.38) 

xpy)] l/2(S12)) + (pyx + xyp)[1]2(Sl3)) 

+ yxp)] 1/2($23)) (5.39a) 

xpy)[ 1/2(A12)) + (pyx - xyp) I 1/2(A~3)) 

- yxp)] 1/2(A23)) (5.39b) 

However, when y = x, we find that 

3(pxx)l/2 = 3[pxx]l/2 (5.40) 

and spin 1/2 occurs only once. 
Finally, for the case 1 | 1 | 1, completely symmetric singlet flavor- 

spin states 

l(xyz)3/2, !(xyz)l/2, _l[xyz]~/2 (5.41) 

are obtained exactly as in (5.38) and (5.39). As in (5.40), 

l_(xyy)l/2 = l[xyy]u2 (5.42) 
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and spin 1/2 occurs only once. Furthermore, when x = y = z, only 

l(xxx)3/2 (5.43) 

is possible. Thus (xxx) occurs only with spin 3/2, (xyy) occurs once with spin 
3/2 and once with spin 1/2, and (xyz) occurs once with spin 3/2 and twice 
with spin 1/2. 

Note that there are three states of type (xxx), 

ccc, bbb, ttt (5.44a) 

six states of type (xyy), 

(ccb), (cct), (cbb), (bbt), (ctt), (btt) (5.44b) 

and one state of type (xyz), namely (cbt). 
According to the above analysis, the numbers of baryon states at the 

su(4), su(5), and su(6) levels are as given in Table V. For su(6) we have 70 
baryons with spin 1/2 and 56 with spin 3/2. 

This is in agreement with the decomposition 

(6 | 6) | 6 = (15 �9 21) | 6 = (20_A (~ 70) (~ (70 (D 56S) (5.45) 

The totally a.s. IR 2OA does not contribute to the ground state for the same 
reason that the 1A resulting from 3 | 3 | 3 was excluded. The 20 a.s. states 
are obtained as follows: one from 3 | 3 | 3, nine from 3 | 3 | 1, nine 
f r o m 3 | 1 7 4  1, a n d o n e f r o m ! | 1 7 4  1. 

The two 70 IRs are symmetric or a.s. with respect to the interchange 
of two baryons, and can be combined together with the spin-l/2 states (5.32) 

Table V. Number  of  Baryon Ground States 

su(4) 

Spin- 1/2 3/2 

su(5) su(6) 

1/2 3/2 1/2 3/2 

3 | 1 7 4  su(3) 8 10 1x  8 =  8 1 x 1 0 =  10 

3 | 1 7 4  6 6 6 2 ) < 6 = 1 2  2 x 6 =  12 
3 3 0 2 ) < 3 = 6  0 
I 

3 | 1 7 4  3(pxx) 3 3 2 ) < 3 = 6  2 X 3 = 6  
3 ( p x y )  0 0 3 + 3 = 6 1 • 3 = 3 

1 | 1 7 4  l (xxx)  0 1 0 2 ) < 1 = 2  
l ( x y y )  0 0 2 )<  1 = 2 2 X 1 = 2 
1 (xyz) 0 0 0 0 

20 20 40 35 
40 75 

1 x 8 = 8  1 x 1 0 =  10 

3 x 6 =  18 3 x 6 =  18 
3 x 3  = 9  0 

3 ) < 3 = 9  3 x 3 = 9  
3(3 + 3) = 18 3 ) < 3  = 9 

0 3 x 1 = 3  
6 ) < 1 = 6  6 ) < 1 = 6  
1 + 1 = 2  1 X l = l  

70 56 
126 
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and (5.33) to obtain totally symmetric flavor-spin states, as was done in 
(5.34) with the two 8 IRs. 

The totally symmetric states of 56s combine with the spin-3/2 states 
(5.31) to give the 56 spin-3/2 baryon states. 

To our knowledge, the analysis of the baryon multiplets of su(5) f  and 
su(6) f  is new. 

All the baryon multiplets are shown in Fig. 7. They include the 8(1/2) 
and 10(3/2), which have considerable experimental support. These multiplets 
are not predicted by the quark (three-generations) model. Very few of the 
multiplets that include the c, b, or t quarks have been observed (Review of 
Particle Properties, 1992). Figure 7 should provide a useful guide to the 
prediction and classification of  new baryon ground states. 

5.5. Baryon Excited-State Multiplets with "qkq0 = - 1  

To obtain these multiplets we proceed as in Section 5.4, with the differ- 
ence that now the flavor-spin state must be totally a.s. 

For 

3 | 3 | 3 = l_a + 8s, + 8_a, + los  (5.46) 

we obtain the two a.s. multiplets 

1(3/2) = 6-112(dus + usd  + sdu - sud  - uds - dsu)13/2)  (5.47) 

_8(1/2) = ~] [_8(Sij)] l l2(Aij))  + 8(Aij)] l/2(Sij))] (5.48) 
i<j 

For 

3 | 3 | 1 = (3_A' G 6S') | 1 (5.49) 

we obtain for each c, b, t e 1, the a.s. mulfiplets 

_6(1/2) = ~ 6_(Su)[I/2(Au)) (5.50) 
i<j 

3~(1/2) = ~ 3_(Au) I 1]2(Sij)) (5.5 la) 
i<j 

3_(3/2) = [3_-(A,2) + 3_-(A,3) + 3_(A23)1 [3/2) (5.51b) 

For 3 | 1 | 1, p ~ 3, x, y ~ 1, we obtain, as in Section 5.4, 

3(1/2) for pxx (5.52) 

and 

3(1/2, 1/2, 3/2) for pxy with x v~ y (5.53) 
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(5.34) 

n p _ ~i~ s ~. , 

~- .:o 11/2) . V i3/2) 
= f l  (sss) 

(5.36) 

(5.37) 

(5.3s) 
(5.39) 

(acb) ~ (uct,) + (dct)+ (uct) ~ (dbt) ~ (ub0 + 

Y Y 
(5.40) 

(5.4D 

(5.42) 

(5.43) 

(acc) + (ucc) +~ (abb~ (,,bb) ~ (a#) + (u#) ~ 

v y 
(scc) (sbb)" 

(cbt )1/2,1/2,3/2 

[(ccb), (cct), (cbb), (bbt ), (ctt), (btO] 1/2,3/2 

(ccc, bbb, ttt )3/2 

Fig. 7. Baryon multiplets. 

where x x  = cc ,  b b ,  tt ,  a n d  x y  = cb ,  ct ,  bt .  It is not possible to form a totally 
a.s. f lavor  state to combine  with [3/2) for p x x .  

For 1 | 1 | 1, x, y E 1, there is no way of  obtaining an a.s. state with 
xxx, but we can construct  a.s. states with 

1(1/2) for xxy = c c b ,  cc t ,  b b c ,  bb t ,  t tc ,  t t b  (5.54) 

and 

1(1/2, 1/2, 3/2) for [cbt] (5.55) 

as in (5.41)-(5.44).  
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(5.47) 
(5.48) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

[dus] 
@ 

13/2~ 

(ad)c (au)c (uu)c (dd)b (au)b (uu)b (dd) t  (au)t (uu)t 

\ :./ 

"V'" "V""' "V"" 
(ss)c (ss)b (ss)t 

[au]c [a,,]b 

[d$]c [ua]c [d~]b [uslb 

[du]t 

[aslt [uslt 

dcc ucc dbb ubb dtt utt 

acc sbb st( 

dcb ucb dct uct dbt ubt 

scb sct sbt 

(5.54) ~) [ccb, cct, bbc, bbt, ttc, ttb ]lr 

(5.55) | [cbt]112,112,312 

Fig. 8. Excited baryon multiplets with "q/'qo = -1 .  

Consequently,  the number  of  sp in- l /2  states is 

8 + (3 + 6 )  • 3 + (3 X 3 • 3) + ( 6 + 2 )  = 7 0  

and the number  of  spin-3/2 states is 

1 + (3 • 3) + (3 • 3 • 1) + 1 = 20. 

This is in accord with (5.45). 
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5.6. Hadron Excited States 

Since all 62 = 36 meson states are allowed in the ground state, they all 
have negative intrinsic parity, because they consist of q~. The excited meson 
states then form two towers, one based on the 36 spin-0- mesons, and the 
other on the 36 spin- 1- mesons. The total angular momentum (spin) increases 
by units of lh with alternating sign of parity. The correlation between angular 
momentum and parity is derived from the extension of the ground-state 
internal algebra to a dynamical algebra which yields the excited state QN 
(Barut, 1972, 1980a). 

The 63 = 216 baryon flavor states decompose into 70 spin-l/2 and 56 
spin-3/2 ground states, plus 70 spin-l/2 and 20 spin-3/2 excited states of 
opposite parity. If we arbitrarily assign positive parity to the ground states, 
then we have four towers of excited states based on the states having J e  = 
1/2 § 3/2§ 1/2-, 3/2-. The value of the angular momentum J of the states 
over each tower increases by units of lh, with alternating sign of parity. 

6. CONCLUSIONS 

Three models of the first type, in which particles are considered to be 
dynamically bound systems of a few basic physical constituents, were pre- 
sented: the stable particles model in Section 2, the/N-model in Section 3, 
and the/A'-model in Section 4. They all allow too many baryon states that 
must be eliminated by a detailed study of the interactions of the constituents. 

The present quark model of hadrons, which considers hadrons to be 
dynamically bound systems of current quarks plus an infinite sea of quark- 
antiquark pairs, gluons, and Higgs particles, also has many serious difficulties 
(Raczka, 1993). 

It is thus worthwhile to consider a model of the second type, in which 
particle states are constructed from tensor products of "symmetry constit- 
uents" that are basis elements of finite IRs of an internal algebra ~ ,  and 
need not represent physical particles. They are completely specified by the 
QNs of ~ and spin, and are not assigned any other physical properties 
such as mass, magnetic moment, momentum, or position. All the physical 
properties belong to the hadron compound system. 

The/q-model of Section 5 is a model of this type. All observed hadron 
ground states are in accord with its predictions, and it can serve as a valuable 
guide for the prediction and classification of new hadrons. Its main fea- 
tures are: 

1. The internal algebra is ~/ = su(4)c X su(6)f .  
2. The color algebra su(4)c unites the quark color-triplet with the lepton 

color-singlet in one FIR 4c. 
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3. The lepton states are specified by the QNs of three disjoint su(2) 
subalgebras of su(6) i that correspond to the three lepton generations (e-, Ve), 
(p~-, V~), and ('r-, v0. 

4. The quark states are specified by the QNs of su(6)f and its subalgebras 
su(5)i, su(4)r, su(3)r, and su(2)f. With respect to su(3)y, they form the original 
triplet (d, u; s), and three singlets c, b, and t. They do not form the three 
doublets (d, u), (s, c), and (b, t) of current quark theory. 

5. A complete analysis of the su(5)fand su(6)ihadron multiplets is given, 
which, to our knowledge, is new. 

6. The numbers of hadron ground states are 36 spin-0 mesons, 36 spin-1 
mesons, 70 spin-l/2 baryons, and 56 spin-3/2 baryons. 

7. The lowest-lying excited baryon states having opposite parity to the 
ground-state baryons are 70 with spin 1/2 and 20 with spin 3/2. 

8. The vector boson states are constructed from the tensor products of 
lepton and antilepton states as a charge isospin-singlet, which we identify 
with the photon "y, and an isospin-triplet, which we identify with W -+ and 
Z ~ [see (5.23)]. 
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